Contents

1

Encoding
1.1 The Message type« o i
1.1.1 Message types o e

Links and Receivers

2.1 TheReceiver v

22 Thelink
2.2.1 Concrete methods
2.2.2 Abstract methods

2.3 TheLinkManager oo v i
2.3.1 Methods

Address resolution protocol

3.1 Why do we need this? oL

3.2 The mapping function Lo

3.3 Implementation oo
3.3.1 Theentry type oo
3.3.2 Making an ARP request
333 Caching

34 The API
341 Mocklinks Lo o
3.4.2 Resolution. L oo
3.4.3 Shuttingitdown

Routing and forwarding

4.1 Aroute
411 Methods
4.1.2 Routeequality

4.2 Therouter.
4.2.1 Therouting table
4.2.2 Handling of ingress traffic

1 Encoding

The encoding and decoding for the twine protocol messages is accomplished via
the MessagePack format. This is a format of which allows one to encode data
structures into a byte stream and send them over the wire. It is a format because
it is standardized - meaning all languages which have a message pack library can
decode twine messages if they re-implement the simple routines for the various
messages - all the hard work is accomplished by the underlying message pack
library used.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

1.1 The Message type
TODO: Add this

1.1.1 Message types

The type of a message is the first field which one will consider. We store this as

an enum value called MType, it is defined below:
/%%

* Message type

*/
public enum MType

An unknown type

*

*

* Used for developer

* safety as this would

* be the value for

* "MType.init™ and hence
* implies you haven't

* set the "Message™'s
* type field

UNKNOWN,

/ k%

* A route advertisement
* message

*/

ADV,

VAT
* Unicast data
* packet
*/

DATA,

/ k%
* An ARP request
* or reply
*/
ARP
by

It is this type which will aid us in decoding the byte[]

payload field with the

10

11

12

13

14

15

16

17

18

19

intended interpretation.

2 Links and Receivers

So-called links are receivers are terms referred to throughout the documentation
and understanding what they are and how they relate to each other is important
for what is to follow.

2.1 The Receiver

A receiver is a relatively simple type, the interface is defined as follows:

VAT

* A subscriber could be a router that wants
* to subscribe to data coming in from this
* interface

*/
public interface Receiver
{
/*%

* On reception of the provided data from
* the given link-layer address over
* the given “Link’
*
* Params:
* source = the source "Link~
* recv = the received data
* srcAddr = the source link-layer address
*/

public void onReceive(Link source, byte[] recv, string srcAddr);

}

As you can probably understand from the just of it, it is basically a handler for
ingress traffic whereby the first argument is the data itself and the second must
be the link-layer address the traffic is sourced from. Any class which implements
the Receiver interface may be (as you will see later) attached to a Link such
that it can have data passed to it.

2.2 The Link

A Link is provides us with a method to send data to a destination link-layer
address and be notified when we receive packets from link-layer addressed hosts
over said link.

A link is composed out of a few things:

1. A list of receivers

e These are the currently attached receivers which is to be called serially
(one after the other) whenever a data packet arrives over this link.

e Given a link with two Receiver(s) attached, then in an example
whereby the bytes [66, 65, 65, 66] arrive over the link then that
that byte array would be copied to the attached

2. A source address

e We must have a way to determine the source address of the link such

that it can be used for various procedures such as ARP
3. A transmission and broadcast mechanism

o We need a way to send unicast (traffic directed to a singular given

host) and also to broadcast to all those attached to the link

2.2.1 Concrete methods

There are a few methods which relate to the Receiver(s). These are shown
below and essentially are for adding, removing and enumerating receivers for
this link:

Method name Description

attachReceiver (Receivefl'his attaches the given receiver to this Link,

receiver) meaning packets will be copied to it

removeReceiver (ReceiveRemoves the given receiver from this Link meaning

receiver) that packets will no longer be copied to it

auto getRecvCnt() Returns the number of receivers attached to this
Link

2.2.1.1 TImplementing your driver As part of implementing your driver,
i.e. by method of extending/sub-classing the Link class, you will implement
the mechanism (however you go about it) by which will extract data from your
link-layer and extract the network-layer part (the twine data payload of your
link-layer packet)

and then what do you do with it?

Well, you will want to make this data available to any of the Receiver(s) which
are attached currently. you want to pass it up to the handlers. This can be
safely done by calling the receive(...) method as shown below:

Method name Description

receive(byte[] recv, This is to be called when the Link sub-class
string srcAddr) (implementation) has network-layer traffic to provide

Calling this method iterates over every attached Receiver and calls their re-
spective onReceive(...) methods.

Note: that the srcAddr must contain the link-layer source address.

2.2.2 Abstract methods

There are a few more methods to take note of, these are not available as an
already-implemented set of methods in the Link class, and hence must be
overriden.

2.2.2.1 Implementing your driver... again Whilst the usage of the
aforementioned receive(byte[], string) method had to do with processing
ingress traffic, these methods require an implementation for handling egress
traffic.

Method name Description

void transmit(bytel[] Link-implementation specific for driver to send data

xmit, string addr) to a specific destination address

void Link-implementation specific for driver to broadcast

broadcast (byte[] to all hosts on its broadcast domain

xmit)

string getAddress() Link-implementation specific for driver to report its
address

Note: The last method, getAddress (), must return the Link’s link-layer address.

2.3 The LinkManager

The LinkManager is a module which consumes a single Receiver is present
to manage the complexity of Link management. It is rather simple however.
Whenever one requests that a Link is to be added to the manager then we shall
take the single Receiver and attach it to the given link. This helps contain this
attachment process in a seperate module such that the Router need only pass
itself in (as it is a Receiver) and call the addLink (Link) method whenever it
wants to attach a link and ensure that packetcs incoming from them make its
way to our Router.

2.3.1 Methods

The methods that are made available are shown below:

Method name Description

addLink (Link link) Adds this link such that we will receive data packets
from it onto our Receiver

removeLink (Link Removes this link and ensures we no longer receive
link) data packets from it to our Receiver
Link[] getLinks() Get a list of all attached links

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

We
the

/*%
*
*
*
*
*/

pub

{

look at the implementation for the addLink (Link) method below to illustrate

ideas mentioned earlier:

Manages links in a manner that

a single "Receiver”™ can be responsible
for all such links attached or

to be attached in the future

lic class LinkManager

/**
Constructs a new "LinkManager"
with the given receiver

Params:
receiver = the receiver
to use

* X X ¥ X X

*/
this(Receiver receiver)

{

this.receiver = receiver;
this.linksLock = new Mutex();

* Adds this link such that we will
* receive data packets from it onto
* our "Receiver~
*
*
*

Params:
link = the link to add

public final void addLink(Link link)
{
this.linksLock.lock();

scope (exit)

{

this.linksLock.unlock();
}
// Add link

this.links.insertAfter(this.links[], link);

44

46

47

48

49

// Receive data from this link
link.attachReceiver(this.receiver);

As you can see we add the provided Link to a list of links and then also attach
the Receiver, which we consumed during construction of the LinkManager, to
this link such that data packets from the link can be sent up to the Receiver.

3 Address resolution protocol

The address resolution protocol or ARP is a standalone module which performs
the mapping of a given layer-3 address addryy to another address, the link-layer
address, which we will call addryy.

3.1 Why do we need this?

The reason that we require this addry, is because when we need to send data
to a host we do so over a link which is indicated in the routing table for said
packet.

However, links don’t speak the same network-layer protocol as twine - they
speak whatever protocol they implement - i.e. Ethernet via LIInterface or the
in-memory PipedLink. Needless to say there is also always a requirement of
such a mapping mechanism because several links may be backed by a different
link-layer protocols in their Link implementation and therefore we cannot marry
ourselves to only one link-layer protocol - we need something dynamic.

3.2 The mapping function

We now head over to the technical side of things. Before we jump directly into
an analysis of the source code it is worth considering what this procedure means
in a mathematical sense because at a high-level this is what the code is modeled
on.

If we have a router r; which has a set of links L = {ly,l>} and we wanted to
send a packet to a host addresses h; and hy which are accessible over I; and I
respectively then the mapping function would appear as such:

(h1,l1) — addTLLl
(hg,lg) — aderL2

On the right hand side the addrrr, and addrrr, are the resolved link-layer
addresses.

10

11

12

13

14

15

16

(hi, ll) — aderLi

Therefore we discover that we have the above mapping function which requires
the network-layer h; address you wish to resolve and the link /; over which the
resolution must be done, this then mapping to a single scalar - the link-layer
address, addrrp,.

3.3 Implementation

We will begin the examination of the code at the deepest level which models
this mathematical function earlier, first, after which we will then consider the
code which calls it and how that works.

3.3.1 The entry type

Firstly let us begin with the definition of the in-memory data type which holds
the mapping details. this is known as the ArpEntry struct and it is shown in
part below:

public struct ArpEntry

{
private string 13Addr;
private string 12Addr;

public bool isEmpty()

{
return this.13Addr == "" && this.12Addr == "";
}
public static ArpEntry empty()
{
return ArpEntry("", "");
}

Please note the methods isEmpty (). An entry is considered empty if both its
network-layer and link-layer fields have an empty string in them, this is normally
accomplished by calling the empty () static method in order to construct such
an ArpEntry.

3.3.2 Making an ARP request

The code to make an ARP request is in the regen(Target target) method
and we will now go through it line by line.

10

11

12

3.3.2.1 Setting up the request and link Firstly we are provided with a
Target, this is encapsulates the network-layer address and the Link instance
we want to request over. We now extract both of those items into their own
variables:

// use this link
Link link = target.getLink();

// address we want to resolve
string addr = target.getAddr();

Before we make the request we will need a way to receive the response, therefore
we attach ourselves, the ArpManager, as a Receiver to the link:

// attach as a receiver to this link
link.attachReceiver(this);

logger.dbg("attach done");

This provides us with a callback method which will be called by the Link
whenever it receives any traffic. It is worth noting that such a method will not
run on the thread concerning the code we are looking at now but rather on the
thread of the Link’s - we will discuss later how will filter it and deliver the result
to us, but for now - back to the code.

3.3.2.2 Encoding and sending the request Now that we know what
we want to request and over which link we can go ahead and encode the ARP
request message and broadcast it over the link:

// generate the message and send request
Arp arpReq = Arp.newRequest(addr);
Message msg;

if (toMessage (arpReq, msg))

{
link.broadcast (msg.encode());
logger.dbg("arp req sent");
b
else
{
logger.error("Arp failed but oh boy, at the encoding level");
X

As you can see we make use of the broadcast (byte[]) method, this is handled
by the link’s implementation according to its link-layer protocol.

3.3.2.3 Waiting for a response We now have to wait for a response and
not just any response. It has to be an ARP reply for the particular network-layer
address we requested earlier.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

This is done with the following code:

// wait for reply
string 11Addr;
bool status = waitForLLAddr(addr, 11Addr);

As you can see we have this call to a method called waitForLLAddr (addr,
11Addr). This method will block for us and can wake up if it is signaled to by
the callback method running on the Link’s thread (as mentioned previously).

StopWatch timer = StopWatch(AutoStart.yes);

// todo, make timeout-able (todo, make configurable)
while(timer.peek() < this.timeout)
{

this.waitLock.lock();

scope (exit)
{

this.waitLock.unlock();
}

this.waitSig.wait(dur! ("msecs")(500)); // todo, duty cycle if missed notify but also he!

// scan if we have it

string* 11Addr = 13Addr in this.addrIncome;

if (11Addr 'is null)

{
string 11AddrRet = *11Addr;
this.addrIncome.remove (13Addr) ;
11AddrOut = 11AddrRet; // set result
return true; // did not timeout

}

return false; // timed out

Because it is implemented using a condition variable, it could potentially miss
a signal from the calling notify() if we only call wait() on our thread after
the link’s thread has called notify (). Therefore, we make our wait () wake up
every now and then by using a timed-wait, to check if the data has been filled in
by the other thread.

Second of all, what we do after retrying from wait(Duration) is check if the

10

10

11

12

13

14

requested network-layer address has been resolved or not - this is that filtering I
was mentioning earlier. This is important as we don’t want to wake up for any
ARP response, but only the one which matches our addr requested.

Thirdly, this also gives us a chance to check the while-loop’s condition so that
we can see if we have timed out (waited long enough) for an ARP response.

After all is done, the resulting entry is placed in a globally accessible
string[string] addrIncome which is protected by the waitLock for both
threads contending it. We then continue:

// if timed out
if (!status)

{
logger.warn("Arp failed for target: ", target);
return ArpEntry.empty();

X

// on success

else

{
ArpEntry arpEntry = ArpEntry(addr, 11Addr);
logger.info("Arp request completed: ", arpEntry);
return arpEntry;

3

We now check, as I said, if the entry is valid or not. If we timed-out then we would
have returned false. Now, as we shall see later, we will still have to return
some ArpEntry because that is the signature of our method, regen(Target
target). Thus, if we failed t get an ArpEntry we then return one generated by
ArpEntry.empty (), else we return the actual entry that we received.

3.3.2.4 Catching responses I have mentioned that the thread which
waits for a matching ARP response to come in (the one which calls the
wait(Duration)) above. So then, the question is - which thread is the one
calling notify () on the condition variable and under which scenarios?

Recall that we attached the ArpManager as a Receiver to the Link object which
was passed into the regen(Target) method:

// use this link
Link link = target.getLink();

// address we want to resolve

11

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

string addr = target.getAddr();

// attach as a receiver to this link
link.attachReceiver(this);

logger.dbg("attach done");

Now the reason for this is that whenever traffic is received on a Link it will copy
the byte[] containing the payload to each attached Receiver.

This means that the ArpManager will receive all packets from a given link,
the question is - which ones to we react to? Well that’s easy. Below I
show you the onReceive(Link src, byte[] data, string srcAddr) method
which the arp manager overrides. This is called every time a given link receives
data:

/%%
* Called by the “Link”™ which received a packet which

* may be of interest to us
*

* Params:

* src = the "Link”™ from where the packet came from
* data = the packet's data

* srcAddr = the link-layer source address

*/

public override void onReceive(Link src, byte[] data, string srcAddr)
{
Message recvMesg;
if (Message.decode(data, recvMesg))
{
// payload type
if (recvMesg.getType() == MType.ARP)
{
Arp arpMesg;
if (recvMesg.decodeAs (arpMesg))
{
logger.dbg("arpMesg, received: ", arpMesg, "from: ", srcAddr);
ArpReply reply;
if (arpMesg.getReply (reply))

{

logger.info("ArpReply: ", reply);

// place and wakeup waiters

placeLLAddr (reply.networkAddr(), reply.l1lAddr());
}

12

30

31

32

33

34

35

10

12

13

14

15

16

17

18

19

20

21

22

}

What we do here is we attempt to decode each incoming packet into our Message
type, then further check if it is an ARP-typed message. If this is the case then
we check if it is an ARP request (because as we have seen, ARP requests are
not handled here).

/%%

* Called by the thread which has an ARP respomnse
it would like to pass off to the thread waiting
on the condition variable

Params:
13Addr
11Addr

the network layer address
the link-layer address

* X X X X *

*/
private void placeLLAddr(string 13Addr, string 11Addr)
{

this.waitLock.lock();

scope(exit)
{
this.waitLock.unlock();

}

this.waitSig.notify(); // todo, more than one or never?

this.addrIncome[13Addr] = 11Addr;
}

If this is the case then we will place the link-layer address into a key-value map
where the key is the network-layer address and the value is the link-layer address.
After this we wake up the sleeping thread by calling notify ().

3.3.3 Caching

I mentioned that there is caching involved. The involvement is that all ArpEntry’s
are stored in a CacheMap! (ArpEntry) which means that they will exist in there
for some period of time and then be evicted.

If an entry has not yet been cached-in then it is created on demand when you
do map.get (Target). Now remember the regen(Target) method? Well, thats

13

the regeneration method that we supply this cache map upon instantiation -
therefore it works as expected.

3.4 The API

We have now discussed the gritty internals which aid us in creating requests,
awaiting replies and then returning the matched entry. We now must move over
to the publicly facing API of the ArpManager. This really just contains a single
method:

Optional! (ArpEntry) resolve(string networkAddr, Link onLink)
The way this method works is that it will return an Optional! (ArpEntry),

meaning that you can test to see if the arp resolution process succeeded or failed
(i.e. timed-out for example) using code that looks akin to what shall follow.

I have prepared an example which can illustrate the usage of the ArpManager.
In fact this example is part of a unittest which tests the various scenarios that
can occur with the manager itself.

3.4.1 Mock links

Firstly we setup a pseudo-link. This is a sub-class of the Link class which is
specifically configured to respond only to ARP requests and only to those which
a mapping exists for.

In this example I configure two mappings of network-layer addresses to link-layer
addresses:

(host 4,5, dummyLink) — host 4,,

(hostp,, , dummyLink) — hostp,,

The code to do this is as follows:

// Map some layer 3 -> layer 2 addresses
string[string] mappings;
mappings["hostA:13"] = "hostA:12";
mappings["hostB:13"] = "hostB:12";

// create a dummy link that responds with those mappings
ArpRespondingLink dummyLink = new ArpRespondingLink(mappings) ;

3.4.2 Resolution

We then must create an ArpManager we can use for the resolution process:

14

ArpManager man = new ArpManager();

Now we are ready to attempt resolution. I first try to resolve the link-layer
address of the network-layer address hostA:13 by specifying it along with the
mock link, dummyLink, which we created earlier:

// try resolve address “hostA:13" over the “dummyLink™ link (should PASS)
Optional! (ArpEntry) entry = man.resolve("hostA:13", dummyLink);
assert(entry.isPresent());

assert(entry.get() .11Addr() == mappings["hostA:13"]);

In the above case the mapping succeeds and we get an ArpEntry returned from
entry.get (), upon which I extract the link-layer address by calling 11Addr ()
on it and comparing it to what I expected, mappings["hostA:13"] - which
maps to hostA:12.

We do a similar example for the other host:

// try resolve address “hostB:13" over the “dummyLink™ link (should PASS)
entry = man.resolve("hostB:13", dummyLink) ;

assert(entry.isPresent());

assert(entry.get() .11Addr() == mappings["hostB:13"]);

Lastly, I wanted to show what a failure would look like. With this we expect
that entry.isPresent () would return false and therefore stop right there:

// try top resolve “hostC:13" over the “dummyLink™ link (should FAIL)
entry = man.resolve("hostC:13", dummyLink) ;
assert(entry.isPresent() == false);

This resolution fails because our ArpRespondingLink, our dummy link, doesn’t
respond to mapping requests of the kind (hostp,,, dummyLink).
3.4.3 Shutting it down

We need to shut down the ArpManager when we shut down the whole system,
this is then accomplished by running its destructor:

// shut down the arp manager
destroy(man) ;

4 Routing and forwarding

Routing is the process by which one announces their routes to others, whilst
forwarding is the usage of those learnt routes in order to facilitate the transfer

15

10

11

12

13

14

of packets from one endpoint to another through a network of inter-connected
routers.

4.1 A route

Before we can get into the process of routing we must first have a conception of
a route itself.

A route consists of the following items:

1. A destination

e Describes to whom this route is for, i.e. a route to who
2. A link

e The Link object over which we can reach this host
3. A gateway

e This is who we would need to forward the packet via in order to get the
packet either to the final destination (in such a case the gateway =
destination) or the next-hop gateway that we must forward via
(gateway # destination)

4. A distance

e This is metric which doesn’t affect how packets are forwarded but
rather how routes that have the same matching destination are tie-
broken.

o Given routes r = {ry,r2} and a function d(r;) which returns the
distance we shall install the route r; which has the lowest distance,
hence 7instaiied = riwhered(r;) = min(d(r)) (TODO: fix this maths)

5. A timer and lifetime

e We have timer which ticks upwards and a lifetime which allows us to
check when the timer > li fetime which signifies that the route has
expired, indicating that we should remove it from the routing table.

And in code this can be found as the Route struct shown below:
/%%
* Represents a route
*/
public struct Route
{
private string dstKey; // destination
private Link 11; // link to use
private string viaKey; // gateway (can be empty)
private ubyte dst; // distance

private StopWatch lifetime; // timer
private Duration expirationTime; // maximum lifetime

16

10

11

12

13

14

16

17

18

19

20

22

23

24

25

26

4.1.1 Methods

Some important methods that we have are the following (there are more but these
are ones that hold under certain conditions that are not so obvious, therefore I
would like to explicitly mention them):

Method Description

isDirect () Returns true when gateway = destination, otherwise
false

isSelfRoute () Returns true if the Link is null, otherwise false

4.1.2 Route equality

Lastly, route equality is something that is checked as part of the router’s code, so
we should probably show how we have overrode the opEquals(Route) method.
This is the method that is called when two Route structs are compared for
equality using the == operator.

Our implementation goes as follows:

public struct Route

{
/%%
* Compares two routes with one
* another
*
* Params:
* rl = first route
* r2 = second route
* Returns: “true” if the routes
* match exactly, otherwise “false’

*/
public static bool isSameRoute(Route rl, Route r2)

{

return rl.destination() == r2.destination() &&
rl.gateway() == r2.gateway() &&
rl.distance() == r2.distance() &&
r1.1link() == r2.1ink();
}

/%%

* Compares this “Route”™ with
* another

17

27

28

29

30

31

32

Params:

rhs = the other route
Returns: “true® if the routes
are identical, “false™ otherwise

* X X X ¥

*/
public bool opEquals(Route rhs)
{

return isSameRoute(this, rhs);

3

4.2 The router

The Router class is the main component of the twine system. Everything such
as Link objects and so forth make a part of the router’s way or working. The
router performs several core tasks which include:

1. Maintaining the routing table
o This means we advertise all routes present in the routing table to
other routers over the available links
It also means checking the routing table every now and then for routes
which ought to be expired
e Receiving advertised routes from other nodes and checking if they
should be installed into the table
2. Traffic management
e Support for installing a message handler which will run whenever
traffic detained to you arrives
o Forwarding traffic on behalf of others; to its final destination
o Allowing the sending of traffic to other nodes

4.2.1 The routing table
The routing table is at the heart of handling egress and forward-intended traffic.
It relatively simple as well, infact this is the routing table itself:

// routing tables
private Route[string] routes;
private Mutex routesLock;

There are then several methods which manipulate this routing table by locking
it, performing some action and then releasing said lock:

18

10

11

Method Description

Optional! (Route) Given the destination network-layer address

findRoute(string) this returns an Optional potentially containing
the found Route

installRoute(Route Checks if the given route should be installed

route) and, if so, installs it.

dumpRoutes () This is a debugging method which prints out
the routing table in ASCII form

installSelfRoute() Installs a route to yourself (destination is the
result of getPublicKey())

Route[] getRoutes() Returns a list of all the currently installed
routes

routeSweep () Checks all routes and evicts those which have
expired

advertiseLoop() Sends out modified routes from the routing

table (with us as the via) on an interval whilst
we are running

4.2.1.1 The self-route You would have seen the installSelfRoute() but
are probably wondering what that is. Well, it is actually called in the constructor
(this()) and is there such that you will have a route in your routing table with
a distance of 0 (meaning it will never be replaced) and with a destination to
your public key. What this means is the the route advertising mechanism will
be able to advertise your presence to other routers - that’s it.
/ k%
* Installs a route to ourselves
* which has a distance of “07,
* a destination of our public
* key and no link
*/
private void installSelfRoute()
{
Route selfR = Route(getPublicKey(), null, 0);
installRoute(selfR);
}

As you can see it doesn’t have much difference to it than any other route being
installed, besides, perhaps - the fact that its Link is null. This is such that when
you call isSelfRoute () (on the Route struct) that it will report itself as such.

4.2.1.2 Installing of routes Let’s take a closer look at installRoute (Route
route) because I would like to explain the logic that is used to determine
whether or not a given route, received from an advertisement, is installed into
the routing table or not.

19

10

11

12

10

11

12

13

private void installRoute(Route route)

{
this.routesLock.lock();

scope (exit)
{
this.routesLock.unlock();

}

Route* cr = route.destination() in this.routes;

Firstly as you have seen we lock the routing table mutex to make sure we don’t
get any inconsistent changes to the routing table during usage (remember that
we will be modifying it and others could be doing so as well). We then also set
a scope(exit) statement which means that upon any exiting of this level of
scope we will unlock the mutex. Lastly we then get a pointer to the Route in
the table at the given key. Remember the routing table was a Route [string]
which means the string, the key, is the destination address of the incoming
route in this case. The value would be the found Routex if any.

// if no such route installs, go ahead and install it
if(cr is null)
{

this.routes[route.destination()] = route;

3

As you can see above we first check if the pointer was null, which indicates no
route to said destination existed. Therefore we will then install the incoming
route at that destination.

// if such a route exists, then only install it if it
// has a smaller distance than the current route

else
{
if (route.distance() < (*cr).distance())
{
this.routes[route.destination()] = route;
}
else
{

// if matched route is the same as incoming route

20

14

15

16

17

18

19

20

21

// then simply refresh the current one
if (xcr == route)
{

cr.refresh();

}

}

However, if a route did exist then we need to check some things before we install
it. Namely, we only install the route if the predicate of d(rincoming) < d(Tcurrent)
where d(r;) is the distance metric of a given route r;. If this is not the case then
we do not install the route. However, we do do a check to see if the incoming
route is identical (must have been the same router advertising a route we received
from it earlier) then we simply refresh it (reset its timer) instead of storing it
again, if that is not the case we don’t change anything.

4.2.1.3 Advertising of routes The advertising of routes is implemented in
the advertiseLoop() which runs on its own thread and will wake up at a fixed
interval in order to perform two operations:

1. Checking for evicted routes

e By calling routeSweep()
2. Sending out advertisements

e This is explained below

We now analyze this loop below:

// Check for and evict expired routes
routeSweep() ;

// advertise to all links
Link[] selected = getLinkMan().getLinks();
logger.info("Advertising to ", selected.length, " many links");

As we can see above we sweep the routing table firstly by a call to routeSweep(),
this is implemented as follows:

this.routesLock.lock();

scope(exit)
{

this.routesLock.unlock();

}

21

7

8

9

10

11

12

13

14

15

16

17

18

10

11

12

13

14

15

16

17

19

20

21

22

foreach(string destination; this.routes.keys())

{
Route cro = this.routes[destination];
// if it has expired and is not a self-route (never expire it)
if (cro.hasExpired() && !cro.isSelfRoute())
{
this.routes.remove(destination);
logger.warn("Expired route '", cro, "'");
}
}

It is relatively simple, lock the table check all which have expired, and if they
have then remove them from the table. Finalizing by unlocking the table’s lock.

Note: We check !cro.isSelfRoute() because we don’t want to expire our
self-route, else if we do it we will cease to advertise our prescenece to neighboring
routers after the initial sweep after starting the router.

We also see how we are enumerating all Link(s) which are attached to the router
(via its LinkManager (returned by getLinkMan())). We would like to advertise
all the routes in our table over all of these links.

// advertise each route in table
foreach(Route route; getRoutes())

{
logger.info("Advertising route '", route, "'");
string dst = route.destination();
string via = this.getPublicKey(); // routes must be advertised as if they're from me nor
ubyte distance = route.distance();
Advertisement advMesg = Advertisement.newAdvertisement(dst, via, distance);
Message message;
if (toMessage (advMesg, message))
{
logger.dbg("Sending advertisement on '", link, "'...");
link.broadcast (message.encode()); // should have a return value for success or fail
logger.info("Sent advertisement");
}
else
{
// todo, handle failure to encode
logger.error("Failure to encode, developer error");
}
}

22

23

24

10

11

12

13

10

11

12

The advertising of routes works as follows. Given a route r; in our routing table,
we construct a new route, ;4. of which has all

4.2.2 Handling of ingress traffic

We now move over to the way in which the Router receives data packets from
its attached links. Recall earlier we described how the LinkManager takes in a
Receiver and kept tracks of all the Link(s) requested to be added and, if added,
would attach the Receiver to it.

Well, now we have a single method in the router, onReceive(Link link,
byte[] data, string srcAddr) which is responsible for handling data pack-
ets coming from all of these attached links. It actually calls a method called
process(Link link, byte[] data, string srcAddr), hence copying its ar-
guments in. We therefore will look at this method:

logger.dbg("Received data from link '", link, "' with ", data.length, " many bytes (11Src: '

Message recvMesg;
if (Message.decode(data, recvMesg))

{
logger.dbg("Received from link '", link, "' message: ", recvMesg);
}
else
{
logger.warn("Received message from '", link, "' but failed to decode");
}

What we do here is attempt to decode the incoming bytes into a Message, the
outermost message encapsulation.

// Process message
MType mType = recvMesg.getType();
switch(mType)
{
// Handle ADV messages
case MType.ADV:
handle_ADV(link, recvMesg);
break;
// Handle ARP requests
case MType.ARP:
handle_ARP(link, srcAddr, recvMesg);
break;

23

14

15

16

18

19

// Handle DATA messages

case MType.DATA:
handle_DATA(link, srcAddr, recvMesg);
break;

default:

logger.warn("Unsupported message type: '"

s mType’ ni II) ;
}

If the decoding succeeds we then move ahead to determine the type of message
and calling the correct method depending on the type.

24

	Encoding
	The Message type
	Message types

	Links and Receivers
	The Receiver
	The Link
	Concrete methods
	Abstract methods

	The LinkManager
	Methods

	Address resolution protocol
	Why do we need this?
	The mapping function
	Implementation
	The entry type
	Making an ARP request
	Caching

	The API
	Mock links
	Resolution
	Shutting it down

	Routing and forwarding
	A route
	Methods
	Route equality

	The router
	The routing table
	Handling of ingress traffic

