eventy/source/eventy/engine.d

357 lines
7.9 KiB
D

module eventy.engine;
import eventy.queues : Queue;
import eventy.signal : Signal;
import eventy.event : Event;
import std.container.dlist;
import core.sync.mutex : Mutex;
import core.thread : Thread, dur, Duration;
import eventy.exceptions;
import std.stdio;
/* TODO: Move elsewhere, this thing thinks it's a delegate in the unit test, idk why */
void runner(Event e)
{
import std.stdio;
writeln("Running event", e.id);
}
unittest
{
Engine engine = new Engine();
engine.start();
/**
* Let the event engine know what typeIDs are
* allowed to be queued
*/
engine.addQueue(1);
engine.addQueue(2);
/**
* Create a new Signal Handler that will handles
* event types `1` and `2` with the given `handler()`
* function
*/
class SignalHandler1 : Signal
{
this()
{
super([1,2]);
}
public override void handler(Event e)
{
import std.stdio;
writeln("Running event", e.id);
}
}
/**
* Tell the event engine that I want to register
* the following handler for its queues `1` and `2`
*/
Signal j = new SignalHandler1();
engine.addSignalHandler(j);
Event eTest = new Event(1);
engine.push(eTest);
eTest = new Event(2);
engine.push(eTest);
Thread.sleep(dur!("seconds")(2));
engine.push(eTest);
writeln("naai");
}
/**
* Engine
*
* An instance of this represents an engine that
* can, at any time, handle the delivery of new
* events, trigger the correct signal handlers
* for the respective events, remove signal
* handlers, add signal handlers, among many
* other things
*/
public final class Engine : Thread
{
/* TODO: Or use a queue data structure */
private DList!(Queue) queues;
private Mutex queueLock;
/* TODO: Or use a queue data structure */
private DList!(Signal) handlers;
private Mutex handlerLock;
private Duration sleepTime;
this()
{
super(&run);
queueLock = new Mutex();
handlerLock = new Mutex();
}
/**
* Set the event loop sleep time
*
* The load average will sky rocket if it is 0,
* which is just because it is calculated on how
* full the run queue is, length but also over time
* and even just one task continousy in it will
* make the average high
*
* Reason why it's always runnable is the process
* (the "thread") is a tight loop with no sleeps
* that would dequeue it from the run queue and/or
* no I/O system calls that would put it into the
* waiting queue
*/
public void setSleep(Duration time)
{
sleepTime = time;
}
/**
* Adds the given Signal handler
*
* @param e the Signal handler to add
*/
public void addSignalHandler(Signal e)
{
/* Lock the signal-set */
handlerLock.lock();
/* Add the new handler */
handlers ~= e;
/* Unlock the signal-set */
handlerLock.unlock();
}
/**
* Event loop
*/
public void run()
{
while(true)
{
/* TODO: Implement me */
/**
* TODO: If lock fails, then yield
*/
/**
* Lock the queue-set
*
* Additionally:
* Don't waste time spinning on mutex,
* if it is not lockable then yield
*/
while(!queueLock.tryLock_nothrow())
{
yield();
}
foreach(Queue queue; queues)
{
/* If the queue has evenets queued */
if(queue.hasEvents())
{
/* TODO: Add different dequeuing techniques */
/* Pop the first Event */
Event headEvent = queue.popEvent();
/* Get all signal-handlers for this event type */
Signal[] handlersMatched = getSignalsForEvent(headEvent);
/* Dispatch the signal handlers */
dispatch(handlersMatched, headEvent);
}
}
/* Unlock the queue set */
queueLock.unlock();
/* Yield to stop mutex starvation */
yield();
/* TODO: Add yield to stop mutex starvation on a single thread */
/* Sleep the thread */
// sleepTime = dur!("seconds")(0);
// sleep(sleepTime);
}
}
/**
* Dispatch(Signal[] set, Event e)
*
* Creates a new thread per signal and dispatches the event to them
*
* TODO: Add ability to dispatch on this thread
*/
private void dispatch(Signal[] signalSet, Event e)
{
foreach(Signal signal; signalSet)
{
/* Create a new Thread */
Thread handlerThread = getThread(signal, e);
/* Start the thread */
handlerThread.start();
}
}
private Thread getThread(Signal signal, Event e)
{
Thread signalHandlerThread = new class Thread
{
this()
{
super(&worker);
}
public void worker()
{
signal.handler(e);
//handler(e);
}
};
return signalHandlerThread;
}
/**
* returns all signal(s) responsible for
* handling the type of Event provided
*
* @param e the Event type to match to
* @returns Signal[] the list of signal
* handlers that handle event e
*/
public Signal[] getSignalsForEvent(Event e)
{
/* Matched handlers */
Signal[] matchedHandlers;
/* Lock the signal-set */
handlerLock.lock();
/* Find all handlers matching */
foreach(Signal signal; handlers)
{
if(signal.handles(e.id))
{
matchedHandlers ~= signal;
}
}
/* Unlock the signal-set */
handlerLock.unlock();
return matchedHandlers;
}
/**
* push(Event e)
*
* Provided an Event, `e`, this will enqueue the event
* to
*/
public void push(Event e)
{
Queue matchedQueue = findQueue(e.id);
if(matchedQueue)
{
/* Append to the queue */
matchedQueue.add(e);
}
}
/**
* Creates a new queue with the given id
* and then adds it
*
* @param id the id of the new queue to add
* @throws EventyException if a queue with
* the given id already exists
*/
public void addQueue(ulong id)
{
/* Create a new queue with the given id */
Queue newQueue = new Queue(id);
/* Lock the queue collection */
queueLock.lock();
/* If no such queue exists then add it (recursive mutex used) */
if(!findQueue(id))
{
/* Add the queue */
queues ~= newQueue;
}
else
{
throw new EventyException("Failure to add queue with ID already in use");
}
/* Unlock the queue collection */
queueLock.unlock();
}
/**
* Given an id, this will return
* the Queue associated with said
* id
*
* @param id the id of the Queue
* @returns The Queue if found but
* null otherwise
*/
public Queue findQueue(ulong id)
{
/* Lock the queue collection */
queueLock.lock();
/* Find the matching queue */
Queue matchedQueue;
foreach(Queue queue; queues)
{
if(queue.id == id)
{
matchedQueue = queue;
break;
}
}
/* Unlock the queue collection */
queueLock.unlock();
return matchedQueue;
}
/* TODO: Add coumentation */
public ulong[] getTypes()
{
/* TODO: Implement me */
return null;
}
}