
Bester Next Generation

Bester NG

Bester is a modular data processing network which allows nodes to submit jobs for processing
by a set of message handlers for particular job/message types and then Bester also manages
the distribution of those job results.

Terminology

Nodes are the network clients, they submit jobs and get job results sent to them.

Message handlers process jobs and can tell the daemon where the output should be directed
(either to another handler) or to users/servers (remote users).

The Bester daemon's handle the movement of data from clients to message handlers and back
to clients (and remote servers by virtue of remote clients).

Nodes

Nodes are the endpoints and starting points of jobs (the units of processing/work in the Bester
network). Nodes have unique names on the local server they are connected to and are also
authenticated with the server using a username-password pair.

Registration

TODO

Authentication

Authentication is the process of supplying your username and password and having the server
verify your account. Your username, <username> is used to address you locally and remotely.

{

 "request" : "auth",

 "account" : {

 "username" : "<username>",

 "password" : "<password"

 }

}

If a node does not authenticate then it cannot use any other commands other then the
authentication and registration ones.

Jobs

Job submission

Jobs are submitted with a type used to indicated which message handler should be responsible

for processing the job and a payload - the data to be processed. There is also a priority field

which can be used to express how urgent it is to run the job.

{

 "request" : "newJob",

 "job" : {

 "payload" : {

 "type" : "<type>",

 "data" : <payload>

 },

 "priority" : <priority>

 }

}

Once the above JSON is submitted then one will receive a reply with details about the
submission and whether or not it was successful - indicated by the <status> field. If it is

successful then the tracking identifier for the job will be in the jobID field.

{

 "reply" : "jobSubmission",

 "submission" : {

 "status" : <status>,

 "jobID" : <jobID>

 }

}

See the first part as submitting the data for processing and the second as getting a tracking id
(receipt) for it.

Job notifications

Jobs are the core concept of Bester. Data goes in, is processed by message handlers
for that job-type, then comes out

Jobs complete and you asynchronously get notifications for their completion, likewise for failures.
Success or failure is indicated by the status field and for the specific job specified in the jobID

field.

{

 "reply" : "jobNotification",

 "job" : {

 "status" : <status>,

 "jobID" : "<jobID>"

 }

}

See this as a notification, other than the job outputs (which are described below), that the job
passed (successfully ran). Or on the other hand failed at some point.

Job outputs

It is worth pointing out that multiple clients are connected to the network, some submit jobs but
then where do they go? Well, to other servers but they have to end up back at a client sometime.
This is what an output is. A "job notification" is a otification of completion or error in processing a
job but you need not (on the same client) necessarily receive a job output too. This is because
the message handlers can direct the output to a client other than the one who submitted the job.

{

 "reply" : "jobOutput",

 "job" : {

 "jobID" : "<jobID>:<submittingUser>@<server>",

 "payload" : {

 "data" : ...,

 "type" : "<type>"

 }

 }

}

The output is in the payload object with both the data (generated by the message handler) and

the type associated with that handler (type) (such that the nodes know how to interpret the

data).

The unique job ID originally assigned to the job during the job submission process is placed in
the jobID field. However, to disambiguate between jobs received with the same ID but

generated from different users on the same server or a mix of the same server and remote jobs
being ingested and presented as job outputs on a remote server, a change has to be made to

this field. The jobID is appended with a : , the user who submitted it, then an @ and lastly the

originating server.

Message handlers

Message handlers are what process job input payloads and spit them out to other clients (a mix
of local and remote) or input to another message handler for further processing. This section
describes the protocol used between the Bester daemon and a message handler process over a
UNIX domain socket registered for the message type that handler is registered for.

Data in (bester -> message handler)

When the daemon receives a job submission it must then convert this into a format for the
message handler which looks like this:

{

 "payload" : <payload>

}

It's pretty simple, just the <payload> data, from the original jobSubmission, is carried through.

Data out (message handler -> daemon)

The message handlers spit out this. Their processed payload is now payload and this can now

either be redirected to a list of users (local and remote) or to another message handler for further
processing and then to a list of users. A last type of director is a handoff which is s submission to
a remote message handler but without awaiting a reply from it (the remote server deals with it as
explained - recursively).

{

 "payload" : <payload>,

 "director" : {

 "type" : <type>,

 }

}

Directing message handler output to users (local and remote) (output -> users)

To direct the output to a set of users one would specify this by making the director field the

following:

{

 "payload" : <payload>,

 "director" : {

 "type" : "userDelivery",

 "users" : ["user1", "user2@8.8.8.8:2222"]

 }

}

Directing message handler output to a local message handler (output -> handler)

To direct the output into another message handler one would specify this by making the director

as follows (this allows recursive handling):

{

 "payload" : <payload>,

 "director" : {

 "type" : "handler",

 "handler" : "<handler>"

 }

}

This output from one message handler will then be sent in as input into the message handler
specified in the handler field.

Directing a message handler output to a remote server / handoff (output -> handler@remote)

Another aspect is if you want to direct a handler's output to a remote server (whereby a handler
there will process it). However, before we go any further, you must note that this is simplex and
one way, there is no way to push the response back to the initiating server, hence why we call it
handoff.

{

 "payload" : <payload>,

 "director" : {

 "type" : "handoff",

 "handler" : "handlerType1@10.0.0.1:8888"

 }

}

Network pipline a message through a set of message handlers ("symmetric handoff")

Bruh if you dare suggest a remote message handler (a true one, then I commit die pls - we never
even had such a feature in Bester normal) - fuckit - let's do it

Server-to-server communication

Another aspect is how servers communicate with eachother. Whether it be a handler delivery the
result of a job completed locally to a set of remote users indirectly via their home server or if a
handoff is to occur. There needs to be a protocol for this.

Remote job delivery

If a handler sets the director type to be that of users and some of these users are on remote
servers then the following will be sent to those servers:

{

 "request" : "jobOutputDelivery",

 "job" : {

 "jobID" : "<jobID>:<submittingUser>@<server>",

 "payload" : {

 "data" : ...,

 "type" : "<type>"

 }

 }

}

On the remote server this will be converted into a message for sending to the clients on that
remote server in the form described in the Job output section.

Remote job handoff

If a handler sets the director type to be handoff then the following will be sent to the remote

servers the handler output is meant to be sent to:

{

 "request" : "jobHandoff",

 "handoff" : {

 "type" : "<type>",

 "payload" : ...,

 "from" : "<user>@<remoteAddress>"

 }

}

Where the handler on the remote server that should handle the given payload is specified by

<type> .

TODO: The server should append the jobID of this job or atleast who it caame from, the job ID
thing is a bit weird as technically this is a new job I guess if we see it from the "ingestion" point of
view but we also can see it as the job extending but that makes no sense as it is completed as
soon as handoff is sent on the sending server (and the client gets such a notification).

TODO: Let's generate new job id with it and then append remote server and user (gathered from
information done when sending (a.k.a. the above JSON). The from field.

TODO: From this information we ingest it as if it were a local user job submission except we
notify no user (on the submitting server - hence the "handoff"), we do construct a job output
though of course.

TODO: The notification happens after handoff sending is complete, not remote job completion.

